RenderMan Bark Shader

Hannes Ricklefs d1132332

10th June 2005

1 Introduction

This Report outlines the outcome of the Major Animation Project that was taken as part of an
MSc Computer Animation at the University of Bournemouth in 2005. The main aim of this project
was to produce a photo realistic RenderMan shader representing tree bark. The main motivation
behind the undertaking of this project was to learn procedural modeling and texturing as well as
the development process of shader writing in general. In addition some parts of this project could
be included in other projects and be reused in the authors Masters Project.

At first the idea was to create both an internal wood shader and an external Bark shader. However,
the internal wood shader is already covered by the standard RenderMan shaders wood.sl and
wood2.sl. Therefore, the author decided to concentrate mainly on the external representation of
trees. This report is structured into different sections. The first section describes identified features
of tree bark that will be in cooperated in the shader. The second sections describes current
approaches from fellow researchers and the approach taken by the author. The third section
gives speculation into different approaches that could have been applied to the same problem.
The fourth section describes problems encountered during the development process and potential
resolutions for these problems. The fifth section lists tools and scripts that were used to enhance
the productivity during this project. Finally the last section gives concluding remarks about the
undertaking of this project.

2 Wood Features

In order to create a photo realistic bark shader reference photographs were taken. As the main goal
was to create a procedural shader that could be applied for many bark types, common features of
bark had to be identified. Figure 1 shows the different identified, patterns by the author as well
as Wang[11]. These patterns are as follows:

1. fracture Fig. 1 (a) - As a tree increases in girth, great tension on the bark can cause fractures
which can be either vertical or horizontal (edges bending upwards)

2. furrowed cork Fig. 1 (b) - Deeply furrowed bark with a thick accumulation of cork cells
3. ironbark Fig. 1 (c) - Rough Bark becomes hard and compact

4. lenticel Fig. 1 (d) - Small oval rounded spots upon the trunk or branch of a tree, from which
the underlying tissues may be protruded or cuppy. Lenticles are usually horizontal as shown.

5. tessellation Fig. 1 (e) - The bark fractures to form flakes or plates with deep furrows.

(©

Figure 1: Bark Patterns

The author decided to focus mainly on patterns Fig. 1 (b,c,e) as the underlying pattern is very
similar. In addition to the bark pattern, color had to be taken into consideration. In general the
color of bark depends on many different aspects: the species, the influence of nature (weathered
appearance), defects caused from nature or humans, and the growth of moss or other plants on
top of the bark as shown in Figure 2.

Figure 2: Moss growth inside crack and on bark surface

3 Approaches

Before deciding on an approach to take the author investigated into papers that had been written
about generating tree bark. The main papers found included: Modeling the Mighty Maple by Jules
Bloomenthal [2], Interactive Modeling of Tree Bark by Wang et al. [11], Finite Element Model of
Fracture Formation on Growing Surfaces by Federl and Prusinkiewicz [4], and Synthesizing Bark
by Lefebvre and Neyret [4]. All of these papers have different approaches to the modeling of bark.
In [6] the authors proposed a method that they claim to be physical, empirical and textural. They
use textures to dress the inside and outside of fractures with detail. They then split the surface
into circular strips and simulate the fracture creation and enlargement by the tension along a strip.
Furthermore, they simulate in the orthogonal direction the propagation of fractures. Although the
pattern generation of the cracks looks natural, the applied textures have a flat appearance. In [11]
the authors provide an interesting approach where they use a bark texture file to identify certain
patterns. These patterns are group into different features which can be edit through a special
piece of software to enhance each feature. This approach results in the most realistic looking tree
bark from all the referenced papers. However, the tweaking of the different features and the need
for the specialised software would be something to consider for a project with a larger timescale.
In Modeling the Mighty Maple, Jules Bloomthal [2] proposed to use a texture file as a bump

map. He generates the bump map through digitising a plaster face by x-raying the cast and using
the digitised x-ray as a depth map. This approach in addition to the aforementioned mentioned
approach produces very natural looking bark. In the last paper [4], Pavol Federl et al. proposed
to synthesize patterns of fractures through finite element methods. This approach is the heaviest
in terms of computation and as claimed in the paper runs in the order of a few hours per frame.

The author made the decision very early on to concentrate on purely procedural textures and
therefore investigated the possibilities in this area. As the fractures that appear on tree bark
represent a non regular cellular pattern the author began to investigate voronoi patterns [5, 3, 1].
The voronoi pattern samples the space into equal cells, the center point of each cell will than be
randomly moved around and a line is drawn at the half way mark between neighbouring cells, Fig.
3.

Figure 3: Voronoi Pattern

In order to give the voronoi diagram a more organic look fractal Brownian noise [1, 3] and
turbulence[l, 3] were added. Fractal Brownian noise was added to the cracks, Fig. 4 (b), and
turbulence to the overall surface, Fig. 5 (b). As real bark has larger and smaller cracks that inter-
act with each other the idea of using a fractal approach to the voronoi pattern was in cooperated
[7]. The basic idea is to apply the same pattern with a higher frequency and a lower amplitude as
seen in Fig. 5 (a).

(a) (b)
Figure 4: Base Voronoi (a) and fBm applied to the cracks (b) of the Bark2.sl shader

(a) (b)
Figure 5: Fractal Voronoi (a) Turbulence (b) of the Bark2.sl shader

As for color the author made the decision to give the shader artist the ability to provide three colors:
baseColor, middleColor, and topColor. Furthermore, to include the aspect of plants growing on
the surface the artist can provide a color for moss that grows inside the cracks and on top of the
surface, Fig. 6. The height of these colors can be controlled by passing in respective values. The
decision of using three colors is based on the reference pictures taken, the reference pictures can
be viewed in the folder named reference handed in with this report. As it can be seen on these
pictures, bark color can be categorised into three different areas. The bottom of the crack, the
crack region and the top surface. In order to give the color of the bark a more organic look each
color is taken and two more colors are created one slightly darker and one slightly lighter than
each of the three colors.

Figure 6: Moss growth based on height

This results in nine colors that are are interpolated through the RenderMan spline function, based
on the height value of the point to be shaded[1l, 9]. The height value gets passed in from the

displacement shader and has to be normalised in order to interpolate the full spectrum of the nine
colors in the surface shader. The actual reflection of light of the surface is based on the material
Clay [1] which provides an almost non reflective surface as tree bark.

During the development of the shader Ian Stephenson, Lecturer at the NCCA mentioned that it
would be interesting to apply some change to the space the shader was declared in, to produce
more interesting affects. The most interesting affects where produced through the RenderMan
function call skew [1, 9]. The skew function takes as parameter an angle and two vectors and
“skews” points between these two vectors depending on the angle. Figure 7 as well as the pictures
in the test_render/beauty folder handed in with this report show the effect.

Figure 7: Skew applied to Figure 5(b)

4 Different Approaches

During the development of the bark shader many different approaches where considered, the most
promising ones are outlined in this section.

4.1 Hypertextures

The new “hype” in the shader area evolves around Hypertextures [8, 1, 3]. The main problem with
Hypertextures is that they are incredibly hard to control and are very complex and expensive in
terms of computation. However, the use of a Hypertexture could be an advantage when controlling
the flow of the texture between branches. Through developing a clever look-up function that
stretches the value in a specific direction depending on the change on the surface. This could be
taken further, as in Houdini and Mantra for example the artist can write 3D texture files. These
files are then used to read 3D point information which makes the look-up very fast. However, the
writing of 3D texture files is not possible in RenderMan and a custom RSL function would have
to be written to access data from a 3D data file created from Mantra. Given enough time and
experience this approach would have been considered over the proposed approach in section 3 as
it is it represents a novel idea for generating tree bark.

4.2 Du Dv continuity

The next approach was to consider the derivative Du and Dv which represent the amount of change
in surface direction in relation to u and v. If either of these two values change a considerable
amount the surface changes and a different mapping/orientation of the procedural pattern should
be applied. In the case that the trunk and the branch were modeled separately this approach
could be applied as follows. The trunk is modeled in its own coordinate system. This coordinate
system is then passed to the shader of the branch which maps its own points to the coordinate
system of the trunk. It has to be taken into consideration that this mapping only applies to the
region where the branch is growing out of the trunk in order to have a continuous flow through the
texture. The problem with this approach is that when mapping from the branch to the trunk the
values from the branch will be mapped to the trunk values at the root. This could be resolved by

either using a different coordinate system such as “NDC”, “screen”, “raster”, or applying an offset.

4.3 Color generation

As the voronoi pattern generates unique cells around the area the idea came to use the cell id
as a value that could be passed to the hue value of the color [7]. However, this approach was
not considered as the generated surface color was to cellular based and therefore the decision was
made to base the color on the height value of the displacement.

4.4 Texture files

The author made the decision very early on that he wants to generated the bark pattern purely
through procedural textures. It would be wrong on the other hand not to look into using texture
files. Fig. 8(a) shows the texture file that was used to create Fig. 8 (b). This approach has many
benefits. In comparison to the procedural approach the texture file renders by a magnitude of 4,
faster than the procedural texture. In addition the texture file is less pruned to aliasing. The main
problem with the texture is that it has to be tile-able and in order to seamlessly flow around the
tree. As the benefit of texture files became so obvious the author included a displacement shader
(Bark Texture.sl) that takes as one of its inputs a texture file. The texture file displacement
shader was written to work with the same surface shader (Bark Colour.sl) as the procedural
displacement shader (Bark2.sl) and therefore has an output value of the displacement height.

Figure 8: (a) Texture file (b) Texture with turbulence added

5 Problems

This project was the first investigation of the author into the field of shader writing. Hence,
the possibility of discovering problems was planned for. This section outlines the various problem
encountered during the writing of the bark shader. Even though some may sound simple they were
due to the inexperience of the author in shader writing. The first main issue was that the objects
appeared to be moving through the texture. This was simply resolved by transforming the point to
be shaded into the relevant shader space. The same problem but with a slightly different outcome
was encountered at a later stage. The problem was that the object and shader were moving at the
same speed but it seamed as if the object was moving faster than the texture resulting in a stretch
of the texture at certain rotations (see the mov folder midrange.mov). There were two solutions to
this problem, the first was in relation to the voronoi pattern. The author wanted to have control
about the appearance of the voronoi pattern meaning being able to stretch the pattern in any
direction therefore he passed a vector that was applied to the point being shaded. The problem
of the texture “half” moving through the object was because as with the first problem the vector
was not transformed into the same space as the point to be shaded. The second solution to the
problem was to move the shader declaration within the same AttributeBegin AttributeEnd block
as the geometry. Even though this solution sounds straight forward it was one of these bugs that
one spends hours over especially at 3’0 clock in the morning.

As aforementioned one of the main goals while creating this shader was to give the artist as many
possibilities to change the appearance of the bark as possible. One of these aspects was to change
the voronoi pattern. Through the limited experience with voronoi patterns and shader writing it
took a fair amount of time to figure out that the pattern could be scaled by passing in a vector
to affect the appearance. The other problems when using voronoi patterns was and still is the
continuity of the cracks along branches as seen in Fig. 9 (a).

—

Figure 9: Branch continuity problem (a) object space (b) shader space

The branch continuity problem can be resolved by applying the shader in shader space which will
guarantee to flow between the two pieces of geometry Fig (b). Through discussions with some of
Lecturers at the NCCA the decision was made that this aspect is not of major importance as in a
production environment the continuity between branches would be painted by an artist. However,
through providing the possibility of specifying the space in which to shade objects leaves the final
decision with the artist.

As stated in section 3 the color of the surface is dependent on the height generated by the dis-
placement shader. The problem here was that the color in the surface shader is created through
a spline function that interpolates between the given colors depending on a value from 0 - 1. The
issue that arose was that the height value passed from the displacement shader could be in any
range but not normalized between 0 and 1. Therefore the generated height value needed to be
normalized. The decision was made to normalize the height value before passing it to the surface
shader. In order to normalize the height value to a range of 0 - 1 the min and max value of all the
height values needed to be calculated. As it is impossible to remember values between shader calls
a new approach, not involving shading language had to be considered. The first idea was to gen-
erate sample values, record these and write a function that depending on the “crack _detail” value
returns a normalized height value. This works fine for a single piece of geometry but fails when
trying to apply the recorded sample values to a different geometry. The shader writing software
Cutter provides the useful feature to write one printf line inside a shader and when executing a
rib file the software collects these print statements and on completion returns the min, max and
average of that value. Hence, the author has written a perl script that behaves similarly. It adds

a printf statement into the shader, collects all values and returns the min, max and average to the
user, see section 6 for more details. After calculating the values the artist can pass the min and
max values to the shader and the shader will automatically normalize the height value.

The main problem encountered during this Major Animation Project is the artifact of aliasing.
Aliasing is one of the major problems in shader writing and especially for displacement shaders.
For an extensive explanation of aliasing see the relevant chapters in [1, 3, 9]. The problem of
aliasing in this bark shader is caused through various aspects. As the overall look of the bark
should be as organic as possible many different layers of noise were added in the form of vfBm[1]
, turbulence [1] and the fractal voronoi pattern. Even though the viBm and turbulence functions
are antialiased the high detail from the fractal voronoi approach causes aliasing. Swapping the
smoothstep function when calculating the height of the displacement with the filteredsmoothstep
function from the supporting materials of [1] did not resolve the issue. If anything it produced
unexpected artifacts as shown in Fig. 10

Figure 10: filteredsmoothstep

To get a better understanding of the artifacts produced through aliasing see the movies provided
in the mov folder that was handed in with this report. The main possibilities to reduce aliasing
is to either reduce the displacement of the bark or to change the following values in the rib file:
PixelSamples, PixelFilter and ShadingRate. The PixelSamples call controls the level of antialiasing
by specifying the number of samples per pixel in the x and y directions [1]. The typical values
range from 2 by 2 when simple antialiasing is needed, to reduce aliasing for this bark shader the
PixelSamples need to be at least 16 by 16 or greater. The ShadingRate controls the frequency
of shading a surface. If the ShadingRate is set to 1, a surface is shaded about once per pixel.
Larger values cause cruder but faster shading [10]. For this bark shader the ShadingRate need to
be as low as 0.05 to 0.001 in order to see a reduction in aliasing. It needs to be mentioned that
all of these changes increase the rendering times, therefore the author has provided the artists
with the texture file shader that aliases far less than the displacement shader and decreases the
render times. The PixelFilter function specifies the type and width of the pixel reconstruction
filter that is to be used [1, 10]. The best results have been achieved with the Catmull-Rom filter.
The Gaussian filter produces very blurry images where as the sinc filter shows more artifacts.

In general a different problem continued throughout the whole project. The aspect of working
towards something specific. Through not having a specific model to which to apply the shader
to or the recreation of a specific bark pattern sometimes resulted in working in a loop. Although
when looking back at the project not having a specific task proved helpful as through applying
the shader to different pieces of geometry the author became more familiar with the shader and
is now able to apply the shader and create realistic looking patterns in a relative short time.

6 Tools

This section outlines the tools that were used during the development of this shader.

e For rendering the following renderers where used: Pixars RenderMan and 3Delight. Where
RenderMan (http://renderman.pixar.com) is Pixars production renderer and 3Delight (http://www.3delight.cor
is a “RenderMan” compliant renderer that is free for a single license.

e In order to create the various tree models Alias Maya Unlimited 6.0.1 was used.

e In order to generate Rib files of the models from Maya, Liquid (http://www.plastickitten.net /liquidwiki/index.p!
and MTOR/Slim were used. Liquid has the advantage that it automatically creates inter-
faces to your shaders for the artist to interact with as shown Fig 11

| [rrame | Fiic | Displays | image | Ravs | Osions | job | Renderer | fiuid |

| v Sampling & Shading
| Shading Rate |0.0010

t Bound | 0.0000

Pixel Samples 64
kd 07000

Hider | Hidden
a | Loooo

Jiver. crack_moss_height | 0.0000

Filtering
v o top.moss_height | 0.9635

Pixel Filter | Catmull-Rom

I

Filter Width | 4.0000
05787

Fiter Height 40000 |

v Reyes
Eye Splits |10

Geometry Splits

Gridsize 256

Texture Memory (Kb} 65536
diff "0.0000 F— Close

~ Opacity Threshold | 0.9960
cellid "0.000 0.000 0.000
+ Image

Bit Depth 8

Gain | 1.0000
Gamma L0000

) Crop Window.

Close

Figure 11: Liquid Interfaces

e In order to increase the productivity various Bash and Perl scripts were written. All of
these can be accessed in the scripts folder handed in with this report. The most used
was the normalrange.pl script that evaluates the range to normalise the height value of
the displacement shader. In order to execute it the user has to add the following line
“/ /printf” at the position of the shader code from which to print the value of interest. To
execute it enter normalrange.pl <shader> <rib> <shaderdir without “/” at the end> <value
to check> <Compiled shader name> in the commandline. For example normalrange.pl
../shader/Bark2.sl ../rib/trunk cameraShapel.l.rib ../shader hump Bark2.sdl. In order to
use MTOR with this shader a Slim Template would have been needed, however the turnseq.pl
script looks for the standard MTOR Surface shader and replaces it with the Bark2 and
Bark Color shader. All the bash scripts were used to animate the texture which was quite
important when identifying the influence of each of the different values or to render out
simple turntables.

e The last tool and most heavily used was Cutter from http://fundza.com This tool is written
for shader writers and provides many valuable features.

All of the above tools provided an excellent pipeline that was very helpful for the creation, devel-
opment and debugging of the shader.

10

7 Conclusion

In general this project was a success as the author learned what he expected. He learned the
strength and limitations of procedural textures and shader writing as well as learning the various
tool that can be used during the shader writing process. The main conclusion was that it is
incredible hard to recreate exact natural patterns using procedural textures, but they provide a
great way to generate patterns close enough in a very short time. As said beforehand the tweaking
in order to make the texture look even closer to the natural counterpart is a very time-consuming
task.

The main aim was to create a shader that is highly controllable by the artist, this has been
achieved as all the values that generate the appearance of the bark can be passed to the shader.
Through providing two different ways of creating the displacement both procedurally (Bark2.sl) or
via texture file (Bark Texture.sl) adds another level of freedom to create the texture. However,
it should be manifested that the main work went into creating the procedural texture and the
texture file shader should be seen as a prove of concept. As said before the author is confident in
stating that this shader provides a great deal of flexibility to create a tree bark texture, it would
now be interesting to apply the shader to a specific shot!

References

[1] Anthony A. Apodaca and Larry Gritz. Advanced RenderMan: Creating CGI for Motion
Picture. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999.

[2] Jules Bloomenthal. Modeling the mighty maple. SIGGRAPH Comput. Graph., 19(3):305-311,
1985.

[3] David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steven Worley.
Tezturing and Modeling: A Procedural Approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2002.

[4] Pavol Federl and Przemyslaw Prusinkiewicz. Finite element model of fracture formation on
growing surfaces. In International Conference on Computational Science, pages 138145,
2004.

[5] Chris Gold. The voronoi web site.

[6] Sylvain Lefebvre and Fabrice Neyret. Synthesizing bark. In EGRW ’02: Proceedings of the
13th Eurographics workshop on Rendering, pages 105-116, Aire-1a-Ville, Switzerland, Switzer-
land, 2002. Eurographics Association.

[7] Abtabet Parrot. Abtabet parrot.

[8] K. Perlin and E. M. Hoffert. Hypertexture. In SIGGRAPH ‘89: Proceedings of the 16th annual
conference on Computer graphics and interactive techniques, pages 253-262, New York, NY,
USA, 1989. ACM Press.

[9] Pixar Animation Studios. Renderman pro server documentation.

[10] Steve Upstill. RenderMan Companion: A Programmer’s Guide to Realistic Computer Graph-
ics. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1989.

[11] Xi Wang, Lifeng Wang, Ligang Liu, Shimin Hu, and Baining Guo. Interactive modeling of
tree bark. In PG ’03: Proceedings of the 11th Pacific Conference on Computer Graphics and
Applications, page 83, Washington, DC, USA, 2003. IEEE Computer Society.

11

